Identification of Channel-lining Amino Acid Residues in the Hydrophobic Segment of Colicin Ia
نویسندگان
چکیده
Colicin Ia is a bactericidal protein of 626 amino acid residues that kills its target cell by forming a channel in the inner membrane; it can also form voltage-dependent channels in planar lipid bilayer membranes. The channel-forming activity resides in the carboxy-terminal domain of approximately 177 residues. In the crystal structure of the water-soluble conformation, this domain consists of a bundle of 10 alpha-helices, with eight mostly amphipathic helices surrounding a hydrophobic helical hairpin (helices H8-H9). We wish to know how this structure changes to form a channel in a lipid bilayer. Although there is evidence that the open channel has four transmembrane segments (H8, H9, and parts of H1 and H6-H7), their arrangement relative to the pore is largely unknown. Given the lack of a detailed structural model, it is imperative to better characterize the channel-lining protein segments. Here, we focus on a segment of 44 residues (573-616), which in the crystal structure comprises the H8-H9 hairpin and flanking regions. We mutated each of these residues to a unique cysteine, added the mutant colicins to the cis side of planar bilayers to form channels, and determined whether sulfhydryl-specific methanethiosulfonate reagents could alter the conduction of ions through the open channel. We found a pattern of reactivity consistent with parts of H8 and H9 lining the channel as alpha-helices, albeit rather short ones for spanning a lipid bilayer (12 residues). The effects of the reactions on channel conductance and selectivity tend to be greater for residues near the amino terminus of H8 and the carboxy terminus of H9, with particularly large effects for G577C, T581C, and G609C, suggesting that these residues may occupy a relatively constricted region near the cis end of the channel.
منابع مشابه
Translocation of inserted foreign epitopes by a channel-forming protein.
Certain bacterial protein toxins are able to insert themselves into, and at least partially across, lipid bilayer membranes in the absence of any auxiliary proteins, by using unknown mechanisms to overcome the high energy barrier presented by the hydrophobic bilayer core. We have previously shown that one such toxin, colicin Ia, translocates a large, hydrophilic part of itself completely across...
متن کاملMajor transmembrane movement associated with colicin Ia channel gating
Colicin Ia, a bacterial protein toxin of 626 amino acid residues, forms voltage-dependent channels in planar lipid bilayer membranes. We have exploited the high affinity binding of streptavidin to biotin to map the topology of the channel-forming domain (roughly 175 residues of the COOH-terminal end) with respect to the membrane. That is, we have determined, for the channel's open and closed st...
متن کاملProtein Translocation Across Planar Bilayers by the Colicin Ia Channel-forming Domain Where Will It End?
Colicin Ia, a 626-residue bactericidal protein, consists of three domains, with the carboxy-terminal domain (C domain) responsible for channel formation. Whole colicin Ia or C domain added to a planar lipid bilayer membrane forms voltage-gated channels. We have shown previously that the channel formed by whole colicin Ia has four membrane-spanning segments and an z 68-residue segment translocat...
متن کاملLocalization of the immunity protein-reactive domain in unmodified and chemically modified COOH-terminal peptides of colicin E1.
The region of the colicin E1 polypeptide that interacts with immunity protein has been localized to a 168-residue COOH-terminal peptide. This is the length of a proteolytically generated peptide fragment of colicin E1 against which imm+ function can be demonstrated in osmotically shocked cells. The role of particular amino acids of the COOH-terminal peptide in the expression of the immune pheno...
متن کاملProtein Translocation across Planar Bilayers by the Colicin Ia Channel-Forming Domain
Colicin Ia, a 626-residue bactericidal protein, consists of three domains, with the carboxy-terminal domain (C domain) responsible for channel formation. Whole colicin Ia or C domain added to a planar lipid bilayer membrane forms voltage-gated channels. We have shown previously that the channel formed by whole colicin Ia has four membrane-spanning segments and an approximately 68-residue segmen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 132 شماره
صفحات -
تاریخ انتشار 2008